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This article presents the results of a study of a class of error-correcting codes
called partial-unit-memory convolutional codes, or PUM codes for short. This class

of codes, though not entirely new, has until now remained relatively unexplored.
This article shows that it is possible to use the well-developed theory of block codes

to construct a large family of promising PUM codes. Indeed, at the end of the

article the performances of several specific PUM codes are compared with that of

the Voyager standard (2, i, 6) convolutional code. It was found that these codes can

outperform the Voyager code with little or no increase in decoder complexity. This

suggests that there may very well be PUM codes that can be used for deep-space
telemetry that offer both increased performance and decreased implementational

complexity over current coding systems.

I. Introduction

This article gives a general construction for, and sev-

eral interesting examples of, partial-unit-memory (PUM)

convolutional codes. First, some definitions and notation
are established.

A convolutional code C of length n and dimension k
over a field F is defined by an encoder

G(D) = Go + GID + ".. + GM DM (1)
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where Go, Gx .... ,GM are k x n matrices with entries

from F. 3 The ratio R = k/n is called the rate of the

code, and M is the code's memory. If u(D) = uo + uiD

+u2D 2 + ... is the input to tile cncoder (where the ui's

are elements of F, and D is an indeterminate), then

x(D) = u(D)G(D) is the output, which is also called a
codeword. The encoder is said to be noncatastrophic if

no infinite-weight input produces a finite-weight output.

The free distance, drr_e, of a convolutional code C is de-

fined to be the minimum weight of any nonzero codeword

x(D) E C. If the encoder G(D) is noncatastrophic, then

drree is the minimum weight of all codewords u(D)G(D)
generated by inputs u(D) of finite weight. All other things

being equal, it is generally desirable to have the quantity

3In tiffs article, it is always assumed that F = GF(2), but most or
M1of the results generalize easily to other finite fields.
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Q = Rdfree as large as possible, since Q is the asymptotic
coding gain of the code, which is a good measure of the

communications improvement afforded by the use of the

code.

A convolutional code C has state complexity m if the

sum of the maximum degrees of the rows of G(D) is m.

This terminology reflects the fact that a physical encoder

for C based on G(D) has 2" states. It is desirable to have
m as small as possible, since the computational complexity

of the Viterbi decoding algorithm for C is proportional to
2 rn"

The notation "[n,k,m,d] code" is introduced to de-
scribe a convolutional code of length n, dimension k,

state complexity m, and free distance d. The notation

"(n,k, m)" code is sometimes used to describe the same
code without explicitly referring to its free distance. For

example, in this notation, an [n, k, d] block code, which can
be viewed as a convolutional code with M = 0, is both an

In, k, 0, d] and an (n, k, 0) convolutional code. For a given
n, k, and m, a code for which dfree is as large as possible

is said to be an optimal (more properly, distance optimal)
code.

A convolutional code with M = 0 is just a block
code. A convolutional code with M = 1 is called a unit-

"memory convolutional code. Unit-memory codes seem to

form a class that lies halfway between block and con-

volutional codes. They were first studied seriously by

Lee [5], who found a number of interesting examples of

unit-memory convolutional codes. Thommesen and Juste-

sen [10] have obtained bounds on the performance of unit-
memory codes, and Justesen, Paaske, and Ballan [3] have

constructed a class of unit-memory codes which they call

quasi-cyclic codes. This article studies another subclass of

unit-memory codes called partial-unit-memory codes.

For a unit-memory convolutional code, the state com-

plexity is just the number of nonzero rows of GI. If some

of the rows of G1 are zero, i.e., if m < k, then it is said

that the code is a partial-unit-memory (PUM) convolu-

tional code. PartiM-unit-memory codes were introduced

by Lauer [4], who constructed several optimal PUM codes.

Some general constructions and further examples of PUM

codes (under the name finite-state codes) were given in [7]
and [8]. This article should be viewed as a continuation

of these earlier studies, in which, among other things, it

is shown that many of these earlier results follow from the

authors' methods. (For example, Lauer's equidistant PUM

codes appear in Example 2 in Section III of this article,

and the general construction of Theorem 5 in [7] appears

as Corollary 4 in Section II.)

Here is a summary of this article. Section II gives a

general construction for PUM codes based on the exis-

tence of certain block codes. Roughly speaking, the main

result is that if there exist two distinct [n,k, do] block

codes with a common [n,k*,d*] subcode, then there ex-

ists a noncatastrophic [n,k,k - k*,d] PUM code with

d > min(d*,2d0). (As a point of comparison, Theo-
rem 5 in [7] shows that if there exists a single [n, k, d0]

block code with an [n,k*,d*] subcode, then there exists

a noncatastrophic [n, k- 1, k- k* - 1, d] PUM code with

d > min(d*,2d0).) Since there is a huge existing cata-
log of block codes, what this means is that it is possi-

ble to construct a very large number of interesting PUM
codes. This is illustrated in Section III with several ex-

amples called Hamming, Reed-Muller, and Golay PUM

codes. While these examples are possibly interesting and

potentially important, the authors believe that they have
only scratched the surface, and hope that future authors,

using these techniques, or ones of their own devising, will
unearth many more examples.

II. Main Results

Tlmorem 1. Suppose that C0 is an [n,k,do] lin-

ear block code, C1 is an [n,k, dl] linear block code, and
Co # C1. Suppose further that C0 and CI contain a common

subcode C*, which is an [n,k*,d*] code. Then there ex-

ists a noncatastrophic [n, k, m, d] PUM convolutional code,

with m = k- k* and d > min(d*,d0 +dl).

Proof." Begin by choosing k x n generator matrices Go
and GI for Co and C1 of the form

= t K0 = LK, 0)

where K* is a k* x n generator matrix for C*. Note that

both K0 and K1 are m x n matrices; for future reference,

let C_ and C_ be the corresponding codes, i.e.,

Next, define the matrix G o as

(5)
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where O is a k* x n matrix of O's. Then define a k x n

polynomial matrix G(D) as follows:

G(D) = Go + GOD (6)

Plainly, G(D) is the generator matrix for an (n, k, m) PUM
code. The proof will be complete when the following

two things are shown: (1) drree > min(d*,d0 + dl), and

(2) G(D) is noncatastrophic. Begin with the assertion
about dfree.

Assume that u(D) = uo + ulD + u_D 2 + ... is a finite
nonzero input sequence, where u0 _ 0 and each ul is a

k-dimensional row vector. Then the corresponding output

sequence is z(D) = u(D)G(D) = zo + zlD + z2D _ +...,
where

fori>_l}
(r)

If u = (Px,P2,... ,1_) is a k-dimensional vector, u L (the

left part of u) and un (the right part of u) are defined as
follows:

u L = (m,...,_k') "_

JuR = (#k.+l,... ,_k)
(8)

Then [see Eq. (2)], for any vector u, one has

uGo : uL K * + uR Ko, uG ° : uR K1 (9)

After combining Eq. (8) with Eq. (6), one has

zo = uL K * + uoRKo

• , = ,,,"Ko+ [,4, ,,,"-,]a,, for i> 1
R

(10)

Now, either [uiL, u__l] = 0 for all i > 1, or not. It will be

shown that weight (z(D)) > d* in the first case, and that

weight (z(D)) > do + dl in the second case.

If [u_,u___] = 0 for all i > 1, then by Eq. (6) and

Eq. (9), one has

z(D) = uoGo = ULOK° (11)

which means that x(D) is a nonzero vector in the rows-
pace of K*, i.e., a nonzero codeword in C*, and so weight

(z(D)) > d* in this case.

If, on the other hand, [ui¢, uiR_,] # 0 for some i > 1,
let M denote the largest such index. Then, u_t = 0, and

Eq. (9) implies

x(D) = uoGo +... + [UZM,u__,]C,D M (12)

But uoGo is a nonzero word from Co, and so has weight

> do, and [u_, u_Rf_l]G1 is a nonzero word from C1, and

so has weight > d2; thus, weight (x(D)) > do + d_ in this
case, which proves the assertion about dfre¢.

It remains to be shown that G(D) can be chosen non-

catastrophically. Lemma 1, which follows, tells, in princi-

ple, whether a given G(D) is catastrophic or not. Lemma 2
then tells that it is always possible to choose the matrices

Go and GI so that G(D) is noncatastrophic.

Lemma 1. Let the linear transformation T : Co ---* C1

be defined by uGo --_ uG1. Then G(D) is noncatastrophic

if and only if every subspace of C0 fixed by T is a subspace
of C*.

proofi Denote the rows of K* by (xl,zl,..., zk.), the

rows of K0 by (Yl,Yl,...,Ym), and the rows of K1 by

(zl,z2,...,zm). Then T is completely characterized by
the k values

Txi"zi, for i = 1,2,...,k* (13)

Tyi = zi, for i - 1,2,...,m (14)

Note that Eq. (13) says that T not only fixes C*, it fixes
C* pointwise.

It is first assumed that every T-fixed subspace of Co

is a subspace of C*, and then shown that G(D) is non-

catastrophic. Let u(D) be a nonzero input such that the

corresponding output x(D) is finite, i.e., zi = 0 for i > i0.
If one defines

= E c* (15)

b, =ufK0 e C_ (16 /

one has, by Eq. (9),
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xi = ai + bi + Tbi-1, for i > 1 (17)

Thus, since it is assumed that xi = 0 for i > i0, it follows

that (recall that the codes are binary)

Tbi-1 = bi + al, for i > i0 (18)

so that (bio,bio+l,...) + C* is a T-fixed subspace of Co.
Ilowever, it is assumed that all T-fixed subspaees of C0 are

subspaees of C*, and so bi E C* for all i > i0. But since

the rows of K0 are linearly independent of the rows of K*,

this means that b i -- 0, and so uin = 0, for all i > i0. But

then, by Eq. (17), ai = 0, and so @ = 0, for all i > i0.

Thus, the input u(D) is necessarily finite, and so G(D) is

noncatastrophic.

Conversely, suppose that B is a nonzero T-fixed sub-

space of Co that properly contains C*. Choose a0 E C*

and b0 E B - C_ arbitrarily. Now, since B is T-fixed, Tbo

is also in B, and so it can be decomposed uniquely into

the sum of an element of C*, which is called ax, and an

element of C_, which is called bl. Note that since bo _ 0,
then bl _ 0 also, for otherwise T would map the k* + 1

dimensional space C* + {b0) into the k*-dimensional space

C*. This process is continued inductively by constructing

an infinite sequence of pairs (al,bi), with ai E C*, bi E C_,
bi i_ 0, such that

Tbi = ai+l + hi+l, for i > 0 (19)

Now for each i > 1, define the vector ui as follows:

@K* = ai (20)

uin Ko "- b, (21)

Since bi ¢ 0, then by Eq. (20), ui _ 0, and so the sequence
(ui) is an infinite sequence of nonzero elements. It will now

be shown that, if (ui) is the input, then the corresponding
output is finite. One has

Tbi - T(uinKo)

= T([0,

= [0, uin]G1, by definition of T

= uinK1

and so by Eq. (9), for i k 1,

x, = uiL K* + uiR Ko + uin_l K1, by Eq. (9)

= ai + bi + Tbi-1, by Eqs. (19) and (20)

= 0, by Eq. (18)

Thus, the infinite input sequence (ui) produces a finite

output sequence (xi), and so G(D) is catastrophic, as was
asserted. [_

Corollary 1. If C0 fl C1 = C*, then any generator

matrix of the form Eq. (6) is noncatastrophic.

Proof." If B is a T-fixed subspace of T, then since

T : Co ---, C1 and B = T(B), B is a subspace of both Co

and C1. Thus, B _ C0ClC1 = C*, and so by Lemma 1,
G(D) is noncatastrophie.

Lemma 1 allows one to tell, in principle, whether or

not a given G(D) is catastrophic. Corollary 1 assures that

if Co Cl C1 = C*, then nothing can go wrong. However, if
Co ft C1 D C*, more work is necessary to find a noncatas-

trophie generator matrix. Lernma 2, which follows, gives

an explicit construction for a noncatastrophic G(D) in the
general case.

Lemma 2. Suppose that Co and C1 are subspaces
of Vn(F), the n-dimensional vector space over F, with

Co 7_ C_ but dim(C0) = dim(Cx) = k, and that C* is a

subspace of both Co and C1, with dim(C*) = k*. Then, if
(Ul,U2,...,u_,.) is a basis for C*, there exist bases for Co
and C1 of the form

(C0) = (ul,...,uk., ]

/(cl) =
(22)

such that the linear transformation T : C0 --* C1 defined
by

Tul = ui, for i= l,...,k* ]

fTai = fli, fori= 1,...,m
(23)

fixes no subspace of Co larger than C*.

Proof." Begin .by constructing two descending se-

quences of subspaces (.Ai) and (Bi):
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Co= Ao D A1D . .. D .AN+I - C*

C1 = 13o D 131 D ... D 13N+1 = C*

such that

dim(Ai) = dim(Bi), i = 0,1,...,N + 1

Ai+l =AiNBi, i=O, 1,...,N

Figure 1 illustrates the construction of Lemrna 2. This

construction can be done inductively as follows. Assume

that A0,A1,...,AI and Bo,B1,...,Bi have already been

constructed. (For i = 0, this simply requires setting .40 =

Co and B0 = (:1.) Let Ai+l = AiNBi. IfAi+l = C*, define

Bi+l = C*, N -- i, and stop. Otherwise, one has C* C

Ai+l C Bi, and so by Lemma A2 in Appendix A, there

exists a subspace Bi+l _ Ai+t such that C* C Bi+l C Bi,
with dimBi+l = dimAi+l.

Now define integers k0,..., kN by ki = dim(Ai)- k*,
so that

kN < kN-1 < ''" < ko = m

Next, using Lemma AI in Appendix A, choose bases

{ux,...,uk., at,...,am) for Co and {ux,...,uk., j31,...,

tim) for 17t such that

(Ul,...,ttk*, al,...,ak,) =.41 /

/(ul .... ,uk., _x,...,_k,) = t_i
(24)

for i = 1,2,...,N. Now define the transformation T as

in Eq. (22). Plainly, T fixes C* pointwise, and also, from

Zq. (23),

T:Ai--*Yi, for i = 0,1,...,N (25)

If now 79 is a subspace of Co fixed by T, then :/9 C Co =

.A0, and 7) = T(73) C_T(Co) = C1 = Bo, so that 79 C_,40 f3

B0 = M1. Also, 79 = T(73) C T(A1) = Bt, using Eq. (24),
so that 79 C_ Ax C'lB1 = A2. Continuing inductively, one

finds that in fact 7) C_ .43,..., 73 C_ AN+I = C*. Thus,

a linear transformation T is constructed such that any T-
fixed subspace of C0 is a subspace of C*.

Lemma 2 tells how to construct noncatastrophic gen-
erator matrices Go and Gt: Just let the rows of Go be

the vectors (ul,...,uk., al,...,am), and let the rows of
G1 be the vectors (ul,...,Uk., _l,...,_,_) in Eq. (21).

Then, the mapping T : Co ---, C1 defined by uGo _ uG1

is the same as the mapping described in Lemma 2, and so

the resulting G(D) is noncatastrophic. This completes the
proof of Theorem 1. t_

Corollary 2. Suppose that Co is an [n,k,d0] linear
block code, and that C* is an [n,k*,d*] code, which is a

subcode of C0. If the automorphism group of 17" contains

a permutation that does not fix Co, then there exists an

[n, k, m, d] PUM convolutional code, with m -- k - k* and

d >_ min(d*, 2d0).

Proof: Let Ir be an automorphism of C* that does not

fix Co, and let Cx = C_. Then, C 1 is an [n, k, do] code not
equal to Co. Now apply Theorem i.

Corollary 3. if C0 is an [n, k, do] linear block code that
contains the all-ones vector, and if k _ 1,n - 1,n, then

there exists an (n, k, k - 1) PUM code with df_ >_ 2d0.

Proof: Here, Corollary 2 is applied, with C* being

the [n, 1,n] code consisting of the two vectors [00...]

and [11... 1]. Clearly C* is fixed by all permutations of

{1,2,..., n}. Furthermore, the only binary linear codes

that are fixed by all permutations of {1, 2,..., n} have di-

mensions 0, 1, n - 1, or n, so there must be an automor-
phism oft* that doesn't fix.Co. Thus, by Corollary 2, there

exists an (n, k, k- 1) PUM code with df_ >_ min(2d0, n).
However, since k > 2, the mimimum distance do of C0 must

be < n; and since Co contains the all-ones vector, there

must be a word of weight n - do. Hence, n - do <_ do, and

so do < n/2. Hence, min(2d0,n) = 2do, so that in fact
dfree _ 2do.

Corollary 4. (Same as Theorem 5 in [7]). Suppose

that C0 is an In, k, do] linear block code, C* is an [n, k*, d']
code that is a subcode of Co, and k - k*2. Then, for

every integer i in the range 1 < i < k - k* - 1, there is

a noncatastrophic [n, k - i, k - i - k ° , at] PUM code with

g > min(d*, 2do).

Proof: Let C_ be any (n, k - i) subcode of Co that con-

tains C*. (The conditions on i guarantee that dimC*z <

dimC_ < dime0, so this is possible.) By Lemma A2, there
exists a subcode C_ not equal to C_ but having the same

dimension, arid also lying between ¢0 and 17". Thus, C_

and C_ are both [n, k - i,d'] block codes, with d' >_ do.

By applying Theorem l'to the codes d/_, tT._,and C*, one

obtains a noncatastrophic [n, k - i, k - i - k ° , d] PUM code
with _ >_ rain(d*, 2d') >_ min(d*, 2d0). [3
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III. Examples

In this section, four examples of PUM codes are pre-

sented, that were constructed with 'the help of the results

in Section II. Example 1 describes a Hamming [8,4,3,8]

PUM code, which was originally discovered by Lauer [4].
Example 2 gives a generalization of Example 1 to a class

of Reed-Muller [u2_,/_ + 1,/_,v2 _] PUM codes, one code

for each pair of positive integers (p, u) except (1, 1) and

(2, i). (The code of Example 1 corresponds to the pair

(3, 1).) The codes in Example 2 were also found, using
different methods, by Lauer. Finally, in Examples 3 and 4,

two new PUM Golay codes, with parameters [24, 12, 7, 12]
and [24, 12, 10, 16], are presented.

Example 1 (a Hamming PUM Code). Let C_ be

the [7, 4, 3] binary cyclic code with generator polynomial

go(z) = 1 + z + x 3, and let C_ be the [7, 4, 3] binary cyclic

code with generator polynomial gl(z) = 1 + z 2 + z 3. Take

as a generator matrix for C_ the 4 x 7 binary matrix G0,

whose rows are g,(z)go(z), go(z), zgo(z), and x_g0(z),

and for C[ the 4 x 7 binary matrix G_, whose rows are

go(z)gl(x), gl(x), xgl(z), and z2gl(z), i.e.,

i 1 1 1 1 1 1)

1 0 1 0 0 0

1 1 0 1 0 0

0 1 1 0 1 0

G_=
0 1 1 0 0

1 0 1 1 0

0 1 0 1 1

Now, if each code is extended to length 8 by appending

an overall parity-check, one obtains codes Co and C1,

both of which are binary [8,4,4] codes with generator
matrices

Go =
1 1 1 1 1 1 1 1\

1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 0 0 1 1 0 1 0

1 1 1 I 1 1 1 1\

1 1 0 1 1 0 0

1 0 1 0 1 1 0

1 0 0 1 0 1 1

Since C_ n C_ is the binary [7, 1,7] repetition code, it

follows that Co N C1 is the binary [8, 1,8] repetition code.

Thus, in Theorem 1, C* can be taken to be the [8,1,8]
repetition code with the 1 x 8 generator matrix

g*=(1 1 1 1 1 1 1 1)

It follows from Corollary 1 that the matrix

1 1 1
G(D)= l+V I+D 1

I+D 0 I+D

I+D 0 0

1 1 i 1 1\

D I+D 0 0

1 D I+D 0

I+D 1 D l+D 0

generates a noncatastrophic [8, 4, 3, 8] PUM code. Further-

more, from [4] (Formula (3) with L = 0) or [7] (Corollary 1
to Theorem 1, with L = 1), any (8, 4, 3) convolutional code

must have drree __<8, so this code is optimal. 4

Example 2 (Some Reed-Muller PUM Codes).

Let p and v > 1 be positive integers. Let A_, be the
[2_,# + 1,2 _-1] first-order Reed-Muller code, and let B_

4 Tlfis code first appeared in the literature in [4], Table 1. It is ap-
parently used by the Soviets in their Regatta space communication

system.

be the [2_, 1, 2_'] zeroth-order Reed-Muller code (a repeti-

tion code), which is a subcode of A_,.s Now let Co(p, v)

be the [v2_',/_ + l, v2 _'-I] code obtained by repeating A t
v times, and let C*(p, v) be the [v2 _, 1, v2"] code obtained
by repeating B, v times. Then, according to Corollary 3,

unless (p,v) = (1,1) or (2, 1), there exists a noncatas-
trophic [v2v,/_ + 1,p, v2 _] PUM code. These codes are

all optimal by the above-cited bounds in [4] or [7]. (This

family of codes was originally constructed by Lauer [4], us-
ing a different approach. He called them equidistant PUM

s MacWilliams and Sloane [6], Chapter 13, is a good reference for
Reed-Muller codes.

62



codes. A similar family of [2u, It, It - 1,2 u] codes was con-
structed in [7], Example 4.) [:l

Example 3 (the [24,12, 7, 12] Golay PUM Code).

It is well known that there exists a [24, 12, 8] binary linear
code; viz., the famous Golay code. It turns out that there

are two isomorphic copies of the Golay code that contain

a common [24, 5, 121 subcode, so that by Theorem 1, there

exists a noncatastrophic [24, 12, 7, 12] PUM convolutional
code. In this example, the construction of this code is
detailed.

Define, for A, B, C, D, E, F 6 GF(8), the following two
functions:

fA,B,C(Z, y) = Tr(Azy) + Tr((B + Cy)z 6) (26)

g_,E,F(_, Y)= Tr((Du + Z)_) + a_((Fu)_ s) (27)

where Tr(z) = z+z2+z 4 is the trace mapping from GF(8)

to GF(2). Then, if fl is a fixed nonzero element of trace
0 in GF(8), the following set of 212 length-24 vectors is a

[24, 12, 8] Golay code, which is called A0:

Ao = [/_,B,c(_,,9) + tol,fa,B,c(_,,92)+ t,I

x IA,S,c(z,y _)+ t2],ear(s) (28)

In Eq. (28), the parameters A, B, and C assume all values

in GF(8), and the parameters t0, q, and t_ assume all

values in GF(2). The proof that A0 is indeed a [24, 12, 8]
code appears in Appendix B as Lemma B5.

Similarly, the following set of 212 length-24 vectors is
another [24, 12, 8] Golay code, which is called B0:

Bo = [g_,E,F(_, ,9)+ 60IgZ_,_,r(_,,92)

+ 611gD,E,F(z, 134) + 62] =eGF(S) (29)

In Eq. (29), the parameters D, E, and F assume all values

in GF(8), and the parameters 60, 61, and 62 assume all

values in GF(2). The proof that B0 is indeed a [24, 12, 8]
code appears in Appendix B as Lemma B6.

In Appendix B (Lemma B10), it is shown that Ao 17Bo
is a [24, 9, 8] code consisting of the following set of vectors:

A1 = [fA,o,c(Z,,9) + _ol.f'A,o,c(_,_'=) + ql

x .fa,o,c(,r,,94)+ c=],_aF(s) (30)

The code A1, in turn, contains a [24, 5, 12] subcode con-
sisting of the following set of vectors:

A_ = [f0,o,c(=,,9)+ ,olYo,o,c(=,,9_)+ t_l

x fo,o,c(z,,94) + to + q]_ecr(s) (31)

(see Lemma B8 in Appendix B). Finally, A3 contains a
[24, 2, 16] subcode Ad:

A4 -- [_olqlto+ ta]=ecF<s) (32)

(see Lemma B9). It follows from Theorem 1 that there

exists both a [24, 12,7, 12] code and a [24, 12, 10, 16] code,

and by the bounds in [4] and [7], they are optimal, s To

actually construct noncatastrophic generator matrices for

these two codes, however, more work is necessary. Here

are the needed intermediate subspaces (see Fig. 2):

BI = [g0,E,F(=,,9)+ 6olg0,E,r(=,Z=) + 6, I

x go,E,F(z,,94) + 62],_eaF(,_) (33)

As = [fo,o,c(z, ,9) + eolfo,o,c(z, ,82) + ql

X fO,O,C(,T,,9 4) Jr" t21xEGF(S) (34)

B2 = [go,,,o(=,,9)+ 6olgo,,,o(_r,,S=) + 6,1

x go,,,o(z,,94)+ 62]=eaF(s) (35)

In Eq. (35), e assumes only the two values 0 and I.

6 In [8], [24, 5,12] and [24, 2,16] subcode, of a [24, 12, 8] Golay code

were found, which led, via Corollary 4, to the construction of both

[24,11,6,12] and [24,11,9,16] PUM codes.
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In orderto showthat thesubspacesin Fig.2 behaveas
depicted,thefollowingmustbeproved:

A0 71 B0 = A1 (36)

A1 71 Ba = A2 (37)

A2 71 B2 = A3 (38)

These relationships are proved in Appendix B in Lem-
mas B10, Bli, and B12.

It thus follows that for the [24, 12, 7, 12] code, a non-
catastrophic choice for Go and Gx is as follows:

G O _--

F f001 "foo_

foo_
011
101

100

fl00

fpoo

f _o0

folo

fo_o
].f op_o

G1

• fool "

foo_

loop,
011

I01]

9olo
100

gopo

gop2o
glo0

g.ooo

gp_oo,

Here, fA,B,C denotes the length-24 vector obtained by tak-

ing Co = el = e_ = 0 in Eq. (28), and gA,B,C denotes the
length-24 vector obtained by taking 60 = 61 = 6_ = 0 in

Eq. (29). The first five rows of Go and G1 are identical,

and they generate the [24, 5, 12] subcode referred to above.
In binary, these two matrices are as follows:

G 0

"01110100 00111010 01001110"

00111010 i0011100 lOlO0110

10011100 01001110 11010010

00000000 11111111 11111111

11111111 00000000 11111111

11111111 00000000 00000000

00101110 01011100 01110010

01011100 10111000 lllO0100

10111000 01110010 11001010

11101000 III01000 11101000

01110100 01110100 01110100

00111010 00111010 00111010

G1 _

-01110100 00111010 01001110

00111010 10011100 10100110

10011100 01001110 11010010

00000000 llllllll llllllll

llllllll 00000000 Illlllll

10010110 10010110 10010110

11111111 00000000 00000000

00101110 00101110 00101110

01011100 01011100 01011100

00101110 01011100 01110010

01011100 10111000 11100100

10111000 01110010 11001010

O

Example 4 (the [24, 12,10,16] Golay PUM
Code). The [24,5, 12] binary linear code of Example 3

contains a [24, 2, 16] subcode, so that by Theorem 1, there

exists a noncatastrophic [24, 12, 10, 16] PUM convolutional
code. In this example, the construction of this code is de-

tailed. The subspaces A0, B0, A1, B1, A2, and A4 defined

in Example 3 are used. Additionally, subspaces B_, A'3,

and B_ are defined as follows:

B_ : [gO,E,0(x,/3) + (_0[g0,E,0(X,,_ 2) + _llgO,E,0(.z. /_ 4)

+ 62] =EGF(s) (39)

A_ = [co1(1le2],,eGr(8) (40)

B_ = [go,.,o(=,Z) + _oljo,.,o(=,Z=) + 6,Igo,.,o(=,Z")

+ _o+ 61]=ccr(s ) (41)

In Eq. (41), e assumes only the two values 0 and 1.

The proof that the subspaces behave as depicted in

Fig. 3, i.e., that A2NB_ = A_ and A_71B_ = A4, is
given in Appendix B, Lemmas B13 and BI4.

Now one can see that a noncatastrophic choice for Go
and G1 for this code is as follows:
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GO -_

"011 "

101

100

fo01

foo:

foop_
flo0

f_oo

f/_2oo

folo

-.fo_oJ

Vl --"

In binary, these matrices are

GO -"

'00000000 11111111

11111111 00000000

iiiiilli 00000000

01110100 00111010

00111010 10011100

10011100 01001110

00101110 01011100

01011100 10111000

10111000 01110010

lll01000 11101000

01110100 01110100

00111010 00111010

" 011 ]
101

g010
100

gozo

g0p_0
f00x

foo_

foo_ 1

flo0

f_oo

-f_O0

11111111

11111111

00000000

01001110

10100110

11010010

01110010

11100100

11001010

11101000

01110100

00111010

G 1

"00000000 11111111 11111111"

11II1111 00000000 11111111

10010110 10010110 10010110

11111111 00000000 00000000

00101110 00101110 00101110

01011100 01011100 01011100

01110100 00111010 01001110

00111010 10011100 10100110

10011100 01001110 11010010

00101110 01011100 01110010

01011100 10111000 11100100

10111000 01110010 11001010

The codes in Examples 1, 3, and 4 are quite interest-

ing as combinatorial objects, but they have potential for

applications. To illustrate, Fig. 4 shows a plot of the per-
formance of these three codes and the NASA standard

[2, 1,6, 10] (non-PUM) code on an additive white Gaussian

channel. Figure 4 shows that the low-complexity Itam-

ruing [8, 4, 3, 8] code is only a bit weaker than the NASA

code, while tile two Golay codes are both a bit stronger.

Since the state complexity of the [24, 12, 7, 12] Golay code
is only 1 greater than that of the NASA code, it may be

that there is a relatively low-complexity decoding algo-

rithm for this code, whose performance will significantly

exceed that of the NASA code. In any case, these perfor-

mance curves certainly justify a serious study of efficient
decoding algorithms for these and other PUM codes.
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Co = '-_o C1 = "_o

"B1

_3_ • r'_N- 1

. ,.._N _

"_N+ 1 = C*

Fig. 1. The construction of Lemma 2.

Ao - Bo

B1
A 1

B2

A 3

Flg. 2. The subapaces needed for the
construction of a noncstastrophlc an-
coder for the [24, 12_ 7_ 12] PUM code.

_N

A0 - B0

B1
A1

A2

81

A 4

Fig. 3. The subspaces needed for the construction
of a noncstsstrophlc encoder for the [24, 12, 10, 16]
code.

100

10 -1

_10-2

O
R:
rr"

10"3

p-
CO

10-4

' I ' I ' I '

0 [2,1,6,

• [8, 4, 3, 8}
• [24, 12, 7, 12]
O [24, 12, 10, 16]

10-`5 --_= t i I j I i
0 1 2 3 4

Eb/NO,dB

Fig. 4. Performance curves for three PUM codes, compared with
the NASA standard [2_ 1, 6_ 10] code, on an additive whlte
Gausslan channel.
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Appendix A

Two Results From Linear Algebra

In this Appendix, two simple results from linear algebra

are provided that are needed in the proof of Lemma 2.

Lemma A1. If (0) = A0 C A1 C .-. C .Am = Y
is an ascending chain of subspaees of an n-dimensional

vector space V, with dim.Ai = ki, then there exists a basis

(_1,..., a,,) for ]2 such that

(cq,...,ak,) =Ai, for i= 1,...,m (A-l)

Proof." One proceeds recursively, as follows. Choose a

basis (cq,...,c_k,) for A1. If m = 1, one is done. Oth-

erwise, by using a standard result in linear algebra [2,

Lemma 4.2.5], the basis (al,...,ak,) for A1 can be ex-

tended to a basis (al, .... _1,..., c_2/of A2, etc. I_

Lernma A2. Suppose that V is an n-dimensionM vec-

tor space over F, and S and T are subspaces of N with

S C 7- C V. Then there exists a subspace T' # 7" such
that dimT t = dimT and S C 7-' C V.

Proof: Suppose that dims = k and dimT- = k + j,

where j > 0. By Lemma A1, it is possible to find a basis
for V of the form

(v) = (-_, ..., _k, fh,..., _, _,1,..., 7_)

wherek+j+h=n, and

If h > j, define 7-' as follows:

7-'= (al,... ,_k,71 .... ,_'j)

If, on the other hand, h < j, define 7-' as follows:

7-'= (al,...,ak,_l,...,rh,#l,...,#_-h)

ffl
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Appendix B

Proofs Needed in Examples 3 and 4

In this Appendix, the assertions made in Section III

about the subspaces A0, A1, A2, A3, A_, A4, B0, BI, B2,

B_, and B._ of V24(2) are proved.

Lemma B1. Let A and B he elements of GF(8) such

that Tr(Az + Bx s) = 0 for all x E GF(8). Then A = B =
0.

Proof: SinceTr(y) = y+y_+y4 and yS = y for all

y E GF(8), it follows that

Tr(Ax + Bx 6) = Ax + A2x _ + A4x 4 +'Bx 6 + B2x s + B4x 3

(B-l)

for all z E GF(8). Thus, the equation Tr(Ax + Bx 6) = 0

is a polynomial equation of sixth degree with 8 roots in

GF(8), and hence, the coefficients of the polynomial must
be zero, i.e., A = B = 0, as asserted.

Lemma B2. Let fA,B,c(x, y) be defined as in Eq. (26),
and suppose there exists a nonzero element y* in GF(8)
such that

fA,B,C(_,Y*) = 0, for all = E GF(8) (B-2)

Then, A = 0 and B = Cy °. Further, ifEq. (B-2) holds and

if fA,B,C(x, y) is not identically zero, then for any y # y*,
the number of solutions x E GF(8) to fA,B,C(X, Y) = 0 is

exactly four.

Proof." If Eq. (B-2) holds, then by Eq. (26), one has

W_((A:)x+ (B + C:):) = 0, for all x E GF(8)

(B-3)

Then, since y* # 0, Lemma B1 implies that A = 0 and
B+Cy* = 0, i.e., B = Cy*. This proves the first statement

of the Lemma. To prove the second statement, assume

that Eq. (B-2) holds and fA,B,C(x,Y) is not identically

zero. Then, since it is already known that A = 0 and

B = Cy*, it must be true that C # 0, so that the equation

fa,B,C(X, y) = 0 becomes

Td(Cv" + cv):) = o (B-4)

Since C ¢ 0 and y ¢ y*, it follows that Cy* + Cy ¢
0, so that Eq. (B-4) has the form Tr(Dx 6) = 0, with

D # 0. But since for z E GF(8), Tr(z) = 0 has ex-

actly four solutions, viz., z = 0, /3, /?2, t74 it follows that

Eq. (B-4) has exactly four solutions. O

Lemma B3. Let gD,E,F(X, Y) be defined as in Eq. (27),
and suppose there exists a nonzero element y* in GF(8)
such that

gv,_,F(_,v') = 0, for all • e GF(8) (B-5)

Then, F = 0 and E = Dy =. Further, ifEq. (B-5) holds and

if gD,E,F(X, y) is not identically zero, then for any y # y*,
the number of solutions x E GF(8) to gD,E,F(X, y) = 0 is

exactly four.

Proof: The proof of Lemma B3 is similar to the proof
of Lemma B2 and is omitted. C1

Lemma B4. Let A, B, C, D, E, and F be elements

of GF(8) such that

:A,B,C(_,v) = ao,E,r(_,v) (B-6)

for all x E GF(8), for two distinct values of y, say, y = Yl
andy-y2. Then, A=D,C=F, andB=E=0.

Proof: In view of the definitions in Eq. (26) and

Eq. (27) of f and g, the given conditions are equivalent
to

Tr((Ay + Dy + E)x

+ (B + Cv + FV):) = O, for all x E GF(8)

(B-7)

for y = yl,y2. Thus, according to Lemma B1, Ay + Dy

+E= 0 and B+Cy+Fy= 0 for y= yl,y2. The two

equations Ayi+Dyi+E = 0 imply that A = D and E = 0,

and the two equations Cyi+Fyi+B = 0 imply that C = F
and B=0. O

Lemma Bh. The code A0 defined in Eq. (28) is a

[24, 12, 8] code.
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Proofi The mapping from 6-tuples [A, B, C, e0, ex, e2]

to codewords in A0 is linear. The kernel of this mapping is

the set of 6-tuples such that the corresponding codeword

is 0, i.e.,

IA,8,c(x,S) + e_ = 0, for i = 0, 1,2 (n-8)

for all x E GF(8). By substituting x = 0 into these equa-

tions, one finds that ei = 0 for i = 0, 1,2, so that in fact

fA,B,C(X,/32') = 0, for i = 0, 1,2 (B-9)

for all x E GF(8). It then follows from Lemma B2 that
A = B = C = 0. Thus, the kernel of the mapping contains

only the 6-tuple [0, 0, 0, 0, 0, 0], and so the mapping is one-

to-one. But since the set of 6-tuples is 12-dimensional,
it follows that the code is also 12-dimensional. Thus, A0

is a (24, 12) code. It remains to prove that its minimum
distance is 8.

To show that the minimum distance is 8, first consider

tile (24, 9) code A_ defined by Eq. (28) with e0 = ex =

e_ = 0. Each word in A_) has three 8-bit segments, viz.,

the 8 bits corresponding to the function fA,B,C(x, y) for
y = /3, /32, and /34. Since in each segment the bit corre-

sponding to z = 0 is 0, each segment may in fact be viewed
as a 7-bit codeword with components indexed by the con-

secutive powers of a primitive root of GF(8). Thus, for the

"A, B, C" codeword in A_, the y-segment's ith component

is given by fA,B,C(fl i, y), where

fA,B,c(X, Y) = Tr(Aym + (B + Cy)z 6)

= (Ay)x + (A2y2)x 2 + (B 4 + C4y4)x _

Jr (A4y4)z 4 -[- (B 2 -[- C2y2)z 5 -]- (B q- Cy)z 6

(n-10)

It follows that each 7-bit segment is a codeword in the

(7, 6) binary cyclic code with generator polynomial g(x) =
x - 1. In particular, each segment has even weight. The

value of tile weights modulo 4 can be computed by a

theorem of McEliece-Solomon [9, Theorem 1] or [1, The-

orem 16.33], which says that if an even-weight binary

vector a = (a0,...,am-1) is described by its Mattson-

Solomon (MS) polynomial (discrete Fourier transform)

A(x) = Ao + ... + A,_-ax n-l, i.e., if

n-1

ai = ___ Aj_ -ij (B-11)
j=0

where /3 is a primitive nth root of unity, and if F_(a) =

_]_"_o')/_AjA,__j, then w(a) - 2F2(a) (mod 4). The MS
polynomials for the 7-bit segments are given by Eq. (B-10),

and so the value of F: for the y-segment is

F2(y) = (Ay)(B + Cy) + (A2y2)(B 2 + C2y 2)

Jr (B 4 -1- C4y4)(A4y 4)

= (AB + A4C't)y + (A2B _ + AC)y 2

+ (,449 4 + A2C2)y 4

= + A'C')y) (m12)

If the three segments are combined into one 21-bit word,

the overall weight is still even, and the overa]l weight rood 4

is determined by the sum of the F2s, viz.,

= + r (/32)+ r (/3

= Tr ((AB + A4C4)(/3 +/32 +/34))

= Tr(0) = 0 (B-13)

Thus, each 7-bit segment has weight 0, 2, 4, or 6, and the
overall weight is divisible by four. Furthermore, if one of

the segments has weight zero, then by Lemma B2 either

the other two segments are both zero, or else the other two

segments have weight 4. It follows that the weights in the

(24, 9) code are 0, 8, 12, and 16. Now the original code A0
is obtained from A_ by complementing some or all of the

segments, i.e., by replacing a segment of weight w with one

of weight 8- w. Thus, in A0, the segments have weight 0,

2, 4, 6, or 8. But since 8 - w -- w (rood 4), the weights
in A0 must also be divisible by four, and so in A0 the only

weights that can occur are 0, 4, 8, 12, 16, 20, and 24. The

weight 4 can only occur as 0 + 0 + 4 and 0 + 2 + 2. Both

of these cases can be eliminated by observing that since a

zero-weight segment can only occur in an uncomplemented

segment, and Lemma B2 says that if a codeword in A0 has

a zero-weight segment, then either the other two segments

both have weight 8, or both have weight 4. Weight 20 is
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ruled out by observing that the complement of a word of
weight 20 is a word of weight 4. [_

Lemma B5 says that the code A0 is a [24, 12, 8] binary

linear code. According to MacWilliams and Sloane [6, Sec-

tion 20.6], such a code must be equivalent to the Golay
code. The next Lemma indicates that the code B0 defined

in Eq. (29) is also equivalent to the Golay code.

Lemma B6. The code B0 defined in Eq. (29) is a
[24, 12,8] code.

Proof: Tile proof is virtually the same as the proof

of Lemma B5. The key difference is that in place of

Eq. (B-10), one has for the code B0

gD,E,F(X, Y) = Tr((Dy + E)x + (Fy)x 6)

= (Dy + E)x + (D_y 2 + E2)x _

q- (F4y4)x 3 q- (D4y 4 ..[-E4)x 4

+ (F2y2)x 5 + (Fy)x 6 (B-14)

so that in place of Eq. (B-12) one has

r=(v) = (by + E)(Fy) + (D2y _ + E_)(F2y 2)

+ (F4y4)(D4y4 + E 4)

= (EF + D4F4)y + (E2F _ + DF)y 2

+ (E4F 4 + D2F2)y 4

-----Tr((EE q- D4F4)y) (B-15)

and in place of Eq. (B-13) one has

r: = + + 4)

= Tr((EF + D4F4)(]_ + f12 + f14))

= Tr(0) : 0 (B-16)

Further details are omitted here.

Lemma B7. The code A1 defined in Eq. (30) is a
[24, 9, 8] code.

Proof." Just as in the proof of Lemma B5, the mapping

from 6-tuples [A, 0, C, e0, el, e2] to codewords in A1 is a lin-

ear, one-to-one mapping, which implies that A1 is a (24, 9)
code. Since A1 is a subcode of A0, its minimum distance

must be >_ 8. There are, however, many codewords in A1

of weight 8, e.g., that obtained by taking A = C = 0,

e0=l, ande1=e2=0. C]

Lemma B8. The code A3 defined in Eq. (31) is a
[24, 5, 12] code.

Proofi Using the formula Eq. (26) for fA,B,C(x,y),

one finds that any eodeword in Aa can be represented as
follows:

[W (CZx6) + ¢01Wr(CZ x6) + ¢11T (CZ4 6)

+ (to + el)]xeaF(S ) (B-17)

Two cases are considered: C = 0 and C _ 0. If C= 0,

then the codeword in Eq. (B-17) becomes [e0[el]e0 + eli,

which is either identically zero or has weight 16. If C ¢ 0,

then since there are exactly 4 elements in GF(8) with trace

0, the codeword in Eq. (B-17) has weight 12. Thus, the
only weights that occur in Aa are 0, 12, and 16, and so A3

is a [24, 5, 12] code, as asserted. {:]

Lemma B9. The code A4 defined in Eq. (32) is a
[24, 2, 16] code.

Proof." According to the definition in Eq. (32), each

codeword in A4 has three 8-bit segments. Either all three

segments are identically zero, or else one segment is zero

and the other two have weight 8. Thus, in A4 the only

weights that occur are 0 and 16, so that A4 is a [24, 2, 16]
code, as asserted. O

Lemma B10. A0 rl B0 = A1.

Proof: Note that from Eq. (26) and Eq. (27),

fA,o,c(x, y) = gA,O,C(x, y). Thus, the code A0 A B0 con-

tains the code A1 as defined in Eq. (30). To prove the

opposite inclusion, note that by the definitions Eq. (28)
and Eq. (29) of A0 and B0, any word in the intersection

will produce an equation of the form fA,B,C(X,]_ 2i) -{-¢i --

gD,E,F(X,t_2i)"b_i for all x E GF(8), for i = 0,1,2. By

substituting x = 0 on both sides of this equation, one gets

ei = 6i, so that in fact, fn,B,C(X,fl 2') = gD,E,F(X,_ 2') for
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all z E GF(8), for i = 0,1,2. By Lemma B4, A = D,
C = F, E = 0, and B = 0, so that a word in the inter-
section must be of the form Eq. (30), i.e., it must lle in

A1. [_

Lemma Bll. A1 N B1 = A2.

Proof: Given the definitions in Eq. (30) and Eq. (33)

of A1 and B1, any word in the intersection A1 VI B1 will

produce an equation of the form fA,o,c(x,fl 2') + ei =

go,E,r(x,fl _') + 5_, for all x E GF(8) and i = 0,1,2.

By substituting z = 0 on both sides of these equations,
one gets ei = 6i, so that in fact one has fA,O,c(z,/32') =

gO,E,F(X, f12_). By Lemma B4, this implies A = E = 0 and
C = F. Thus, the intersection A1 riB1 is exactly the same
as A2, as defined in Eq. (34).

Lemma B12. A2 ¢3 B2 = A3.

Proof." Given Lemma B4 and the definitions Eq. (34)

and Eq. (35) of As and B2, this result is immediate.

Lemma B13. A2 N B_ - A_.

Proof." If a word in As, as defined in Eq. (34), is the

same as a word in B_, as defined in Eq. (39), then by

setting z = 0, one finds that e0 = _0, el = 61, and e2 = 52.
Thus, also fo,o.c(z,y) = go,E,o(z,Y) for all x E GF(8)

and y = fl,fl2,fl4. It then follows from Lemma B4 that

C = E = 0, and so a word in the intersection As N B__
must be of the form described in Eq. (40).

Lemma B14. A_ N B_ = A4.

Proofi If a word in A_, as defined in Eq. (40), is the

same as a word in B_, as defined in Eq. (41), then by

setting z = 0, one finds that e0 = 50, el = 51, and e2 =

69 + _1. Thus, also fo,o,o(x,y) = go,_,o( x, y) for all z C

GF(8) and y =/_, f12, f14. It then follows from Lemma B4
that e = 0, and so a word in the intersection A_ N B_ must
be of the form described in Eq. (32). _]
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